Package: imaginator (via r-universe)

October 13, 2024

Title Simulate General Insurance Policies and Losses

Version 1.0.0

Maintainer Brian Fannin

bfannin@casact.org>

Description Simulate general insurance policies, losses and loss emergence. The package contemplates deterministic and stochastic policy retention and growth scenarios. Retention and growth rates are percentages relative to the expiring portfolio. Claims are simulated for each policy. This is accomplished either be assuming a frequency distribution per development lag or by generating random wait times until claim emergence and settlement. Loss simulation uses standard loss distributions for claim amounts.

License MPL-2.0 | file LICENSE

Depends R (>= 3.2.3)

LazyData true

Imports assertthat, checkmate, distributions3, dplyr, lubridate, magrittr, rlang, stringi, tibble

Suggests testthat, knitr, rmarkdown, ggplot2

VignetteBuilder knitr

RoxygenNote 7.1.2

Encoding UTF-8

URL https://github.com/casact/imaginator

Repository https://casact.r-universe.dev

RemoteUrl https://github.com/casact/imaginator

RemoteRef HEAD

RemoteSha cc84bf3618b2ddd14029ddef618210d699b1efd7

Contents

claims_by_first_report	2
claims_by_link_ratio	3
claims_by_wait_time	4
imaginator	5
policies_grow	5
policies_renew	5
policies_simulate	6
policy_year_increment	7
policy_year_new	7
	•
	- 9

Index

claims_by_first_report

Claims by first report

Description

Given a data frame of policies, this will simulate the number of claims- and their initial paymentper policy by the development lag at which they are first reported.

Usage

claims_by_first_report(tbl_policy, frequency, payment_severity, lags)

Arguments

tbl_policy	A policy data frame.
frequency	A list of the same length as 'lags' of number of claims per policy or their distributions.
payment_severit	.y
	A list of the same length as 'lags' of payment amount for each claim or their distributions.
lags	A vector of lags as integers.

Details

Creates a data frame with randomly generated claim values.

Value

A claims data frame

claims_by_link_ratio

Examples

```
# This will generate a claim data frame which has 1,000 records
# each of which has a severity of 100
tbl_policy <- policy_year_new(100, 2001)
tbl_claims <- claims_by_first_report(
            tbl_policy,
            frequency = 10,
            payment_severity = 100,
            lags = 1)</pre>
```

claims_by_link_ratio Claims by link ratio

Description

Given a data frame of claims, this will simulate claim development by applying a (possibly) random link ratio.

Usage

```
claims_by_link_ratio(tbl_claims, links, lags)
```

Arguments

tbl_claims	A claims data frame
links	A vector of the same length as 'lags' of factors, or their distributions, determin- ing how severities change from one evaluation date to the next.
lags	A vector of lags

Details

This function will apply the link ratio algorithm at an individual claim level.

Value

A claims data frame

Examples

```
links = c(1.25, 1.1, 1.05),
lags = 1:4)
```

claims_by_wait_time claims_by_wait_time

Description

Construct a data frame of claims simulated by time between events.

Usage

```
claims_by_wait_time(
   tbl_policy,
   claim_frequency,
   payment_frequency,
   occurrence_wait,
   report_wait,
   pay_wait,
   pay_severity,
   pay_only_positive = TRUE
)
```

Arguments

A data frame of policy records	
Number of claims per policy; can be a distribution.	
су	
Number of payments per claim; can be a distribution.	
occurrence_wait	
Time until occurrence for each claim; can be a distribution	
Time until report; can be a distribution.	
Lag time between payments; can be a distribution.	
Severity of each claim payment; can be a distribution.	
ve	
Boolean indicating whether to discard negative payments.	

Details

This function will generate claim transactions.

Wait times and frequencies will be converted to integers with no message. If wait times or claim frequencies are less than zero, or payment frequencies are less than one, they will be converted with a message.

imaginator

Description

Simulate general insurance policies, losses and loss emergence. The package contemplates deterministic and stochastic policy retention and growth scenarios. Retention and growth rates are percentages relative to the expiring portfolio. Claims are simulated for each policy. This is accomplished either be assuming a frequency distribution per development lag or by generating random wait times until claim emergence and settlement. Loss simulation uses standard loss distributions for claim amounts.

policies_grow Simulate policy growth

Description

Given a policy data frame, this will generate new policies in subsequent policy years.

Usage

policies_grow(tbl_policy, growth)

Arguments

tbl_policy	Data frame of policy data
growth	Scalar value greater than or equal to zero

policies_renew Simulate policy renewal

Description

Given a policy data frame, this will construct renewal data frames. The number of policies which renew is governed by the the Retention parameter.

Usage

policies_renew(tbl_policy, retention)

Arguments

tbl_policy	Data frame of policy data
retention	Scalar value greater than or equal to zero

Description

Given a starting number of policies, this function will generate additional years of policy data. Growth is given as a the positive rate of growth of new policies. This may be set to zero. Retention is given as the portion of expiring policies which will renew.

Usage

```
policies_simulate(
    n,
    policy_years,
    num_years,
    exposure = 1,
    retention = 1,
    growth = 0,
    start_id = 1,
    additional_columns
)
```

Arguments

n	An integer giving the number of policies in the first year
policy_years	A vector of integers in sequence
num_years	The number of years to simulate. If 'policy_years' is given, this is ignored
exposure	Exposure per policy
retention	A vector indicating loss of policies
growth	A vector indicating the rate of growth of policies
start_id	Integer of the first number in the policy ID sequence
additional_colu	mns
	A list of a different as house a surface base

A list of additonal column names and values

Value

A data frame of policy data

policy_year_increment Incremental a policy year

Description

Given a policy data frame, this will combine the policies_grow and policies_renew functions to produce a subsequent policy year.

Usage

```
policy_year_increment(tbl_policy, retention, growth)
```

Arguments

tbl_policy	A policy data frame
retention	Scalar renewal rate
growth	Scalar growth rate

Value

Policy data frame

policy_year_new	Simulate a new policy year
porrey_year_new	Simulate a new policy year

Description

This will generate a data frame of policy data. This may be used to construct renewal and growth data frames for subsequent policy years.

Usage

```
policy_year_new(n, policy_year, exposure = 1, start_id = 1, additional_columns)
```

Arguments

n	The number of policies to generate
policy_year	Scalar integer indicating the policy year to generate
exposure	Vector of exposures
start_id	Integer of the first number in the policy ID sequence
additional_colu	mns
	A list of addtional column names and values

Details

Effective dates are uniformly distributed throughout the year.

When providing additional columns, each element of the list must be a scalar and be named.

Value

Data frame of policy data

Index

claims_by_first_report, 2
claims_by_link_ratio, 3
claims_by_wait_time, 4

imaginator, 5

policies_grow, 5
policies_renew, 5
policies_simulate, 6
policy_year_increment, 7
policy_year_new, 7